Using perturbatively selected configuration interaction in quantum Monte Carlo calculations
نویسندگان
چکیده
Defining accurate and compact trial wavefunctions leading to small statistical and fixed-node errors in quantum Monte Carlo (QMC) calculations is still a challenging problem. Here, we propose to make use of selected configuration interaction (CI) expansions obtained by selecting the most important determinants through a perturbative criterion. A major advantage with respect to truncated CASSCF wavefunctions or CI expansions limited to a maximum number of excitations (e.g, CISD) is that much smaller expansions can be considered (many unessential determinants are avoided), an important practical point for efficient QMC calculations. The most important determinants entering first during the selection process (hierarchical construction) the main features of the nodal structure of the wavefunction can be expected to be obtained with a moderate number of determinants. Thanks to this property, the delicate problem of optimizing in a Monte Carlo framework the numerous linear/nonlinear parameters of the determinantal part of the trial wavefunction could be avoided. As a first numerical example, the calculation of the ground-state energy of the oxygen atom is presented. The best DMC value reported so far is obtained.
منابع مشابه
Quantum Monte Carlo Methods for Nuclei at Finite Temperature
We discuss finite temperature quantum Monte Carlo methods in the framework of the interacting nuclear shell model. The methods are based on a representation of the imaginary-time many-body propagator as a superposition of one-body propagators describing non-interacting fermions moving in fluctuating auxiliary fields. Fermionic Monte Carlo calculations have been limited by a “sign” problem. A pr...
متن کاملQuantum Monte Carlo with very large multideterminant wavefunctions
An algorithm to compute efficiently the first two derivatives of (very) large multideterminant wavefunctions for quantum Monte Carlo calculations is presented. The calculation of determinants and their derivatives is performed using the Sherman-Morrison formula for updating the inverse Slater matrix. An improved implementation based on the reduction of the number of column substitutions and on ...
متن کاملSensing of Methanol and Ethanol with Nano-Structured SnO2 (110) in Gas Phase: Monte Carlo Simulation
The SnO2 films deposited from inorganic precursors via sol–gel dip coating method have been found to be highly sensitive to methanol and ethanol vapor. Three dimensional nano-structure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. The sensitivity and selectivity of SnO2 (110) nano...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملCommunication: energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water.
We show the feasibility of using quantum Monte Carlo (QMC) to compute benchmark energies for configuration samples of thermal-equilibrium water clusters and the bulk liquid containing up to 64 molecules. Evidence that the accuracy of these benchmarks approaches that of basis-set converged coupled-cluster calculations is noted. We illustrate the usefulness of the benchmarks by using them to anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017